|

2010年普通高等学校招生全国统一考试(天津卷)
数 学(文史类)
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第I卷1至3页。第Ⅱ卷4至11页。考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!
第I卷
注意事项:
1.答I卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:
如果事件 互斥,那么 棱柱的体积公式V=Sh.
其中S表示棱柱的底面积.
h表示棱柱的高
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i是虚数单位,复数 =
(A)1+2i (B)2+4i (C)-1-2i (D)2-i
(2)设变量x,y满足约束条件 则目标函数z=4x+2y的最大值为
(A)12 (B)10 (C)8 (D)2
(3)阅读右边的程序框图,运行相应的程序,则输出s的值为
(A)-1 (B)0 (C)1 (D)3
(4)函数f(x)=
(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)
(5)下列命题中,真命题是
(A)
(B)
(C)
(D)
(6)设
(A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c
(7)设集合 则实数a的取值范围是
(A) (B)
(C) (D)
(8) 为了得到这个函数的图象,只要将 的图象上所有的点
(A)向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
(B) 向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
(C) 向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
(D) 向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
(9)如图,在ΔABC中, , , ,则 =
(A) (B) (C) (D)
(10)设函数 , 则 的值域是
(A) (B) (C) (D)
2010年普通高等学校招生全国统一考试(天津卷)
数 学(文史类)
第Ⅱ卷
注意事项:
1. 答卷前将密封线内的项目填写清楚。
2. 用钢笔或圆珠笔直接答在试卷上。
3. 本卷共12小题,共100分。
题号 二 三 总分
得分 (17) (18) (19) (20) (21) (22)
二、填空题:本大题共6小题,每小题4分,共24分。把答案填在题中的横线上。
(11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若PB=1,PD=3,则 的值为 。
(12)一个几何体的三视图如图所示,则这个几何体的体积为 。
(13)已知双曲线 的一条渐近线方程是 ,它的一个焦点与抛物线 的焦点相同。则双曲线的方程为 。
(14)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切。则圆C的方程为 。
(15)设{an}是等比数列,公比 ,Sn为{an}的前n项和。记 设 为数列{ }的最大项,则 = 。
(16)设函数f(x)=x- ,对任意x 恒成立,则实数m的取值范围是________
三、解答题:本大题共6小题,共76分。解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
在 ABC中, 。
(Ⅰ)证明B=C:
(Ⅱ)若 =- ,求sin 的值。
(18)(本小题满分12分)
有编号为 , ,… 的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。
(19)(本小题满分12分)
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD= ,∠BAD=∠CDA=45°.
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
(20)(本小题满分12分)
已知函数f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间 上,f(x)>0恒成立,求a的取值范围.
(21)(本小题满分14分)
已知椭圆 (a>b>0)的离心率e= ,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若 ,求直线l的倾斜角;
(ii)若点Q 在线段AB的垂直平分线上,且 .求 的值.
(22)(本小题满分14分)
在数列 中, =0,且对任意k , 成等差数列,其公差为2k.
(Ⅰ)证明 成等比数列;
(Ⅱ)求数列 的通项公式;
(Ⅲ)记 ,证明 .
2010年普通高等学校招生全国统一考试(天津卷)
数学(文史类)参考答案
一. 选择题:本题考查基本知识和基本运算,每小题5分,满分50分.
(1)A (2)B (3)B (4)C (5)A
(6)D (7)C (8)A (9)D (10)D
二. 填空题:本题考查基本知识和基本运算,每小题4分,满分24分.
(11) (12)3 (13)
(14) (15)4 (16)
三. 解答题
(17)本小题主要考查正弦定理、两角和与差的正弦、同角三角函数的基本关系、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分.
(Ⅰ)证明:在△ABC中,由正弦定理及已知得 = .于是sinBcosC-cosBsinC=0,即sin(B-C)=0.因为 ,从而B-C=0.
所以B=C.
(Ⅱ)解:由A+B+C= 和(Ⅰ)得A= -2B,故cos2B=-cos( -2B)=-cosA= .
又0<2B< ,于是sin2B= = .
从而sin4B=2sin2Bcos2B= ,cos4B= .
所以
(18)本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分
(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)= = .
(Ⅱ)(i)解:一等品零件的编号为 .从这6个一等品零件中随机抽取2个,所有可能的结果有: , , ,
, , , 共有15种.
(ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有: , ,共有6种.
所以P(B)= .
(19)本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.满分12分.
(I)解:因为四边形ADEF是正方形,所以FA//ED.故 为异面直线CE与AF所成的角.
因为FA 平面ABCD,所以FA CD.故ED CD.
在Rt△CDE中,CD=1,ED= ,CE= =3,故cos = = .
所以异面直线CE和AF所成角的余弦值为 .
(Ⅱ)证明:过点B作BG//CD,交AD于点G,则 .由 ,可得BG AB,从而CD AB,又CD FA,FA AB=A,所以CD 平面ABF.
(Ⅲ)解:由(Ⅱ)及已知,可得AG= ,即G为AD的中点.取EF的中点N,连接GN,则GN EF,因为BC//AD,所以BC//EF.过点N作NM EF,交BC于M,则 为二面角B-EF-A的平面角。
连接GM,可得AD 平面GNM,故AD GM.从而BC GM.由已知,可得GM= .由NG//FA,FA GM,得NG GM.
在Rt△NGM中,tan ,
所以二面角B-EF-A的正切值为 .
(20)本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.满分12分.
(Ⅰ)解:当a=1时,f(x)= ,f(2)=3;f’(x)= , f’(2)=6.所以曲线y=f(x)在点(2,f(2))处的切线方程为y-3=6(x-2),即y=6x-9.
(Ⅱ)解:f’(x)= .令f’(x)=0,解得x=0或x= .
以下分两种情况讨论:
(1) 若 ,当x变化时,f’(x),f(x)的变化情况如下表:
X
0
f’(x) + 0 -
f(x)
极大值
当 等价于
解不等式组得-5<a<5.因此 .
(2) 若a>2,则 .当x变化时,f’(x),f(x)的变化情况如下表:
X
0
f’(x) + 0 - 0 +
f(x)
极大值
极小值
当 时,f(x)>0等价于 即
解不等式组得 或 .因此2<a<5.
综合(1)和(2),可知a的取值范围为0<a<5.
(21)本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、直线的倾斜角、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查综合分析与运算能力.满分14分.
(Ⅰ)解:由e= ,得 .再由 ,解得a=2b.
由题意可知 ,即ab=2.
解方程组 得a=2,b=1.
所以椭圆的方程为 .
(Ⅱ)(i)解:由(Ⅰ)可知点A的坐标是(-2,0).设点B的坐标为 ,直线l的斜率为k.则直线l的方程为y=k(x+2).
于是A、B两点的坐标满足方程组 消去y并整理,得
.
由 ,得 .从而 .
所以 .
由 ,得 .
整理得 ,即 ,解得k= .
所以直线l的倾斜角为 或 .
(ii)解:设线段AB的中点为M,由(i)得到M的坐标为 .
以下分两种情况:
(1)当k=0时,点B的坐标是(2,0),线段AB的垂直平分线为y轴,于是
由 ,得 。
(2)当 时,线段AB的垂直平分线方程为 。
令 ,解得 。
由 , ,
,
整理得 。故 。所以 。
综上, 或
(22)本小题主要考查等差数列的定义及前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法,满分14分。
(I)证明:由题设可知, , , , ,
。
从而 ,所以 , , 成等比数列。
(II)解:由题设可得
所以
.
由 ,得 ,从而 .
所以数列 的通项公式为 或写为 , 。
(III)证明:由(II)可知 , ,
以下分两种情况进行讨论:
(1) 当n为偶数时,设n=2m
若 ,则 ,
若 ,则
.
所以 ,从而
(2) 当n为奇数时,设 。
所以 ,从而
综合(1)和(2)可知,对任意 有 |
|