教师招考论坛

 找回密码
 免费注册
每日定期发布教师招牌资讯
查看: 165|回复: 0

[数学] 中学数学你能证明它们吗教案

[复制链接]
发表于 2014-11-10 14:52:27 | 显示全部楼层 |阅读模式
2017年最新教师招聘考试内部教材
教师招考二维码

  你能证明它们吗(一)一、教学目标:1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。3、结合实例休会反证的涵义。二、教学重点:了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理。三、教学方法:观察法。四、教学过程:复习:1、 什么是等腰三角形?2、  你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。同学们和我一起来回忆上学期学过的公理w本套教材选用如下命题作为公理 :w1.二直线被第三条直线所截,如果同位角相等,那么这二条直线平行; w2.二条平行线被第三条直线所截,同位角相等; w3.二边夹角对应相等的二个三角形全等; (SAS)w4.二角及其夹边对应相等的二个三角形全等; (ASA)w5.三边对应相等的二个三角形全等; (SSS)w6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:推论 二角及其中一角的对边对应相等的二个三角形全等。(AAS)证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:△ABC≌△DEF证明:∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)∠C=∠F(等量代换)BC=EF(已知)△ABC≌△DEF(ASA)这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。议一议:(1)还记得我们探索过的等腰三角形的性质吗?(2)你能利用已有的公理和定理证明这些结论吗?等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。定理:等腰三角形的二个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。求证:∠B=∠C我们刚才利用折叠的方法说明了这二个底角相等。实际上,折痕将等腰三角形分成了二个全等三角形。能否通过作一条线段,得到二个全等的三角形,从而证明这二个底角相等呢?证明:取BC的中点D,连接AD。∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD  (SSS)∴∠B=∠C (全等三角形的对应边角相等)让同学们通过探索、合作交流找出其他的证明方法。想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。随堂练习:做教科书第4页第1,2题。课堂小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的涵义。五、课外作业:教科书第5页第1,2题。六、板述设计:七、课后记:
高通过率教师招考教材
您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

关注教师招考微信公众号

教师招考论坛 ( 闽ICP备14015709号 )

GMT+8, 2024-11-19 22:43 , Processed in 0.088326 second(s), 22 queries , Gzip On.

Powered by 0590EDU管理团队 X3.4

© 2001-2020 教师招考论坛

返回顶部