教师招考论坛

 找回密码
 免费注册
每日定期发布教师招牌资讯
查看: 837|回复: 0

[数学] 2015教师招聘数学备考:“立体几何”考点预测

[复制链接]
发表于 2015-1-20 11:02:23 | 显示全部楼层 |阅读模式
2017年最新教师招聘考试内部教材
教师招考二维码

立体几何由三部分组成,一是空间几何体,二是空间点、直线、平面的位置关系,三是立体几何中的向量方法.教师招聘考试在命制立体几何试题中,对这三个部分的要求和考查方式是不同的.在空间几何体部分,主要是以空间几何体的三视图为主展开,考查空间几何体三视图的识别判断、考查通过三视图给出的空间几何体的表面积和体积的计算等问题,试题的题型主要是选择题或者填空题,在难度上也进行了一定的控制,尽管各地有所不同,但基本上都是中等难度或者较易的试题;在空间点、直线、平面的位置关系部分,主要以解答题的方法进行考查,考查的重点是空间线面平行关系和垂直关系的证明,而且一般是这个解答题的第一问;对立体几何中的向量方法部分,主要以解答题的方式进行考查,而且偏重在第二问或者第三问中使用这个方法,考查的重点是使用空间向量的方法进行空间角和距离等问题的计算,把立体几何问题转化为空间向量的运算问题.

1.平面的基本性质是高中立体几何的重点内容,要掌握平面的基本形式,特别主要:不共线的三点确定一个平面。考察点和平面的位置关系时,要注意讨论点在平面的同侧还是两侧,会根据不同的情况作出相应的图形.

2.线面关系中三类平行的共同点是“无公共点”;三类垂直的共同点是“成角90°”.线面平行、面面平行,最终化归为线线平行;线面垂直、面面垂直,最终化归为线线垂直.

3.直线与平面所成角的范围是[0,π/2];两异面直线所成角的范围是(0,π/2】.一般情况下,求二面角往往是指定的二面角,若是求两平面所成二面角只要求出它们的锐角(直角)情况即可.

4.立体几何中的计算主要是角、距离、体积、面积的计算.两异面直线所成角、直线与平面所成角的计算是重点.求两异面直线所成角可以利用平移的方法将角转化到三角形中去求解,也可以利用空间向量的方法,特别要注意的是两异面直线所成角的范围.当求出的余弦值为a时,其所成角的大小应为arccos|a|.

特别需要注意的是:两向量所成的角是两向量方向所成的角,它与两向量所在的异面直线所成角的概念是不一样的.


8.正方体中线面关系可以说是高中的重点内容,相当一部分的考题是以正方体日作为载体进行命题,或是截取正方体的一部分进行命题。

9.三棱锥顶点在地面三角形内射影为三角形的外心、内心、垂心的条件要分清楚;

外心:三侧棱相等或三侧棱与底面所成的角相等(充要条件);内心:三侧面与底面所成的二面角相等(充要条件);垂心:相对的棱垂直(充要条件)或三侧棱两两垂直(充分条件)。

10.关注正棱锥中的几个直角三角形:(1)高、斜高、底面边心距组成的直角三角形;(2)侧棱、斜高、底面棱长的一半组成的直角三角形;(3)底面上的边心距、底面外接圆半径、底面棱长的一半组成的直角三角形.(4)高、侧棱、底面外接圆半径组成的直角三角形.进一步关注的是:侧棱与底面所成角、侧面与底面所成二面角的平面角都体现在这些直角三角形中.

11.特别注意有一侧棱与底面垂直且底面为正方形、直角梯形、菱形等四棱锥,关注四个面都是直角三角形的三棱锥.它们之间的线面关系也是教师招聘考试命题的热点内容.

12.对平面图形的翻折问题要有所了解:翻折后,在同一半平面内的两点、点线及两线的位置关系是不变的,若两点分别在两个半平面中,两点之间的距离一般会发生变化.要认清从平面图形到空间图形之间的联系,能够从平面图形的关系过渡到空间图形的关系,根据问题画出空间图形.


高通过率教师招考教材
您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

关注教师招考微信公众号

教师招考论坛 ( 闽ICP备14015709号 )

GMT+8, 2025-2-23 19:44 , Processed in 0.111255 second(s), 27 queries , Gzip On.

Powered by 0590EDU管理团队 X3.4

© 2001-2020 教师招考论坛

返回顶部