|
1.已知等比数列{an}的公比为q,且|q|>1,又知a2、a3的等比中项为42,a1、a2的等差中项为9。
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an·log12an,数列{bn}的前n项和为Tn,求limn→∞Tn+n·2n+1an+2的值。
【参考答案】
解:(1)由已知,得a2·a3=(42)2=32a1+a4=2×9=18
∵{an}是等比数列且公比为q,
∴a21·q3=32a1+a1q3=18,解得a1=2q=2或a1=16q=12
又|q|>1∴a1=2q=2 从而an=2·2n-1=2n
(2)∵bn=an·log12an=-n·2n(n∈N*)
Tn=b1+b2+…+bn=-(1×2+2×22+…+n·2n) ①
2Tn=-(1·22+2·23+…+n·2n+1) ②
②-①得Tn=(2+22+…+2n)-n·2n+1
∴Tn=(1-n)·2n+1-2
limn→∞Tn+n·2n+1an+2=limn→∞2n+1-22n+2=12
2.某超市对顾客实行优惠购物,规定如下:
(1)若一次购物不多于200元,则不予优惠;
(2)若一次购物满200元,但不超过500元,按标准给予9折优惠;
(3)若一次购物超过500元,其中500元以下部分(包括500元)给予9折优惠,超过500元部分给予8折优惠。
小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买的同样多的物品,他需付多少元?
【参考答案】
解:小李第一次购物付款198元,有两种情况:①没有享受打折,直接付款198元;②享受打折后,付款198元。因此,解答此题应分两种情况分别讨论。
①当198元为购物不打折付的钱时,现购物品原价为198元。
设小李第二次购物的原价为x元。则根据题意,列方程:
500×90%+(x-500)×80%=554
解得:x=630
于是小李两次购物的原价共为:
198+630=828(元)。
小张一次性购买这些物品应付:
500×90%+(828-500)×80%=712.4(元)
②当198元为购物打折后付的钱,设购该物品的原价为x元,则根据题意列方程得:
x·90%=198
解得:x=220
又第二次购物的原价为630元,于是小李两次购物的原价共为:
630+220=850(元)
小张一次性购买这些物品应付:
500×90%+(850-500)×80%=730(元)
答:小张需付712.4元或730元。
3.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数字游戏。游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下,洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数。若这个两位数小于45,则甲获胜,否则乙获胜。你认为这个游戏公平吗?请运用概率知识说明理由。
【参考答案】
解:这个游戏不公平,游戏所有可能出现的结果如下表:
第二次第一次
3456
333343536
443444546
553545556
663646566
表中共有16种可能结果,小于45的两位数共有6种。
∴P(甲获胜)=616=38,P(乙获胜)=1016=58。
∵38≠58,
∴这个游戏不公平。
|
|