《勾股定理》 知识与技能目标 学生理解和掌握勾股定理,并能够灵活运用勾股定理解决一些简单的实际问题。 过程与方法目标 在具体情境中,引导学生经历分析、猜想、探索及验证勾股定理的过程,提高动手操作能力、合作交流能力和逻辑推理的能力。 情感态度与价值观目标 激发爱国热情,培养探索热情和钻研精神。同时体验 数学的美感,从而了解数学,喜欢几何。 二、教学重难点 教学重点 探究勾股定理内容,并能简单应用。 教学难点 探索及验证勾股定理的过程。 三、教学方法 讨论法、讲授法、练习法。 四、教学过程 (一)导入新课 1.多媒体 课件放映图片欣赏:邮票、美丽的勾股树、国际数学大会会标、勾股定理树形图。 2.多媒体课件演示FLASH小动画片,提出问题请问消防队员能否进入三楼灭火?引导学生发现问题实质为“已知一直角三角形的两边,求第三边”的问题,但是不会求解,从而顺势引出课题。 (二)新课讲授 1.实验探索 通过两个问题来引导学生进行探索: 问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?这一问题的设计意图是引导学生参与探索,培养学生的语言表达能力,体会数形结合的思想。生:两个小正方形的面积之和等于大的正方形的面积。进而引导学生合理猜测:是否任意直角三角形都符合这个“三边关系”的结论? 问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?引导学生拿出提前准备好的四个全等的边长为a、b、c的直角三角形,以前后四人为一组进行拼图用等积法证明勾股定理。 2.归纳总结 通过前面两个实验就可以对勾股定理进行归纳总结:直角三角形两直角边上正方形面积的和等于斜边上正方形的面积,得出为。巧妙地突出本课的重点,突破了本课的难点。 3.知识回顾 (三)实践应用 在勾股定理相关知识和应用的基础上,考虑到学生的不同情况,以及锻炼学生思维能力的目的, 教师安排三个梯度的课堂练习,即基础题、情境题和探索题。 (四)课程小结 教师引导学生对本节课所学知识进行小结,学生畅谈本节课的收获,教师给予点评和补充。 (五)布置作业 学生复习本节课所学知识,并完成剩余的课后习题,搜集身边见到的能用本节课所学知识解决的一些日常生活问题,以待下节课分享、交流。 五、板书设计
|