|
【二面角的平面角的定位】
空间图形的位置关系是立体几何的重要内容,解决立体几何问题的关键在于三定:定性分析→定位作图→定量计算,其中定性是定位、定量的基础,而定量是定位、定性的深化,在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般来说,对其平面角的定位是问题解决的先决一步,可是,从以往的教学中发现,学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定其位,使问题的解决徒劳无益,本文就是针对这一点,来谈一谈平日教学中体会。
重温二面角的平面角的定义
如图(1),α、β是由l出发的两个平面,O是l上任意一点,O∈α,且OC⊥l;CD∈β,且OD⊥l。这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角,从中不难得到下列特征:
⑴过棱上任意一点,其平面角是唯一的。
⑵其平面角所在平面与其两个半平面均垂直。
另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么由特征⑵可知AB⊥β.突出L、OC、OD、AB,这便是另一特征。
⑶体现出一完整的垂线定理(或逆定理)的环境背景。
对以上特征进行剖析:
由于二面角的平面角是由一点和两条射线构成的,所以二面角的平面角的定位可化归为"定点"或"定线(面)"的问题。
特征⑴表明,其平面角的定位可先在棱上取一"点",耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。
例1:已知正三棱锥V-ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。
由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。 |
|