[师]下面我们进行有关练习
(投影片C)
1.如图在⊙O中,弦AB所对的劣弧为圆的 ,圆的半径为2cm,求AB的长.
[生]解:由题意可知 的度数为120°,
∴∠AOB=120°.
作OC⊥AB,垂足为C,则
∠AOC=60°,AC=BC.
在Rt△ABC中,
AC=OAsin60°=2×sin60°=2× .
∴AB=2AC=2 (cm).
四、圆心角与圆周角的关系
[生]一条弧所对的圆周角等于它所对的圆心角的一半.
在同圆或等圆中,同弧或等弧所对的圆周角相等.
直径所对的圆周角是直角,90°的圆周角所对的弦是直径.
五、弧长,扇形面积,圆锥的侧面积和全面积
[师]我们经过探索,归纳出弧长、扇形面积、圆锥的侧面积公式,大家不仅要牢记公式,而且要把它的由来表述清楚,由于时间关系,我们在这里不推导公式的由来,只是让学生掌握公式并能运用.
[生]弧长公式l= ,π是圆心角,R为半径.
扇形面积公式S= 或S= lR.n为圆心角,R为扇形的半径,l为扇形弧长.
圆锥的侧面积S侧=πrl,其中l为圆锥的母线长,r为底面圆的半径.
S全=S侧+S底=πrl+πr2.
Ⅲ.课时小结
本节课我们复习巩固了圆的概念及对称性;垂径定理及其逆定理;圆心角、弧、弦、弦心距之间的关系;圆心角和圆周角的关系;弧长、扇形面积、圆锥的侧面积和全面积.
Ⅳ.课后作业
复习题 A组
Ⅴ.活动与深究
弓形面积
如图,把扇形OAmB的面积以及△OAB的面积计算出来,就可以得到弓形AmB的面积.如图(1)中,弓形AmB的面积小于半圆的面积,这时S弓形=S扇形-S△OAB;图(2)中,弓形AmB的面积大于半圆的面积,这时S弓形=S扇形+S△OAB;图(3)中,弓形AmB的面积等于半圆的面积,这时S弓形= S圆.
例题:水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m,求截面上有水的弓形的面积(精确到0.01m2).
解:如图,在⊙O中,连接OA、OB,作弦AB的垂直平分线,垂足为D,交 于点C.
∵OA=0.6,DC=0.3,
∴OD=0.6-0.3=0.3,∠AOD=60°,AD=0.3 .
∵S弓形ACB=S扇形OACB-S△OAB,
∴S扇形OACB= •0.62=0.12π(m2),
S△OAB= AB•OD= ×0.6 ×0.3=0.09 (m2)
∴S弓形ACB=0.12π-0.09 ≈0.22(m2).
板书设计
回顾与思考
一、1.圆的有关概念及性质;2.垂径定理及其逆定理;
3.圆心角、弧、弦之间关系定理;4.圆心角与圆周角的关系;
5.弧长、扇形面积、圆锥的侧面积和全面积.二、课时小结
三、课后作业
回顾与思考(2)
教学目标
(一)教学知识点
1.了解点与圆,直线与圆以及圆和圆的位置关系.
2.了解切线的概念,切线的性质及判定.
3.会过圆上一点画圆的切线.
(二)能力训练要求
1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.
2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.
3.通过画圆的切线,训练学生的作图能力.
4.通过全章内容的归纳总结,训练学生各方面的能力.
(三)情感与价值观要求
1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.
2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
教学重点
1.探索并了解点与圆、直线与圆、圆与圆的位置关系.
2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.
教学难点
探索各种位置关系及切线的性质.
教学方法
学生自己交流总结法.
教具准备
投影片五张:
第一张:(记作A)
第二张:(记作B)
第三张:(记作C)
第四张:(记作D)
第五张:(记作E)
教学过程
Ⅰ.回顾本章内容
[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.
Ⅱ.具体内容巩固
一、确定圆的条件
[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.
[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.
经过两点也可以作无数个圆.
设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.
经过在同一直线上的三点不能作圆.
经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.
[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?
[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.
例题讲解(投影片A)
矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?
[师]请大家互相交流.
[生]解:如图,矩形ABCD的对角线AC和BD相交于点O.
∵四边形ABCD为矩形,
∴OA=OC=OB=OD.
∴A、B、C、D四点到定点O的距离都等于矩形对角线的一半.
∴A、B、C、D四点在以O为圆心,OA为半径的圆上.
二、三种位置关系
[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.
1.点和圆的位置关系
[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.
[师]总结得不错,下面看具体的例子.
(投影片B)
1.⊙O的半径r=5cm,圆心O到直线l的 距离d=OD=3 m.在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点对于⊙O的位置各是怎样的?
2.菱形各边的中点在同一个圆上吗?
分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.
[生]1.解:如图(1),在Rt△OPD中,
∵OD=3,PD=4,
∴OP= =5=r.
所以点P在圆上.
同理可知OR= <5,OQ= >5.
所以点R在圆内,点Q在圆外.
2.如图(2),菱形ABCD中,对角线AC和BD相交于点O,E、F、G、H分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB、△BOC、△COD、△DOA都是直角三角形,又由于E、F、G、H分别是各直角三角形斜边上的中点,所以OE、OF、OG、OH分别是各直角三角形斜边上的中线,因此有OE= AB,OF= BC,OG= CD,OH= AD,而AB=BC=CD=DA.所以OE=OF=OG=OH.即各中点E、F、G、H到对角线的交点O的距离相等,所以菱形各边的中点在同一个圆上.
2.直线和圆的位置关系
[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.
[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?
[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小.
当d<r时,直线和圆相交;
当d=r时,直线和圆相切;
当d>r时,直线和圆相离.
[师]很好,下面我们做一个练习.
(投影片C)
如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?
分析:因为x轴、y轴是直线,所以要判断⊙A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,⊙A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.
[生]解:∵A点的坐标是(-4,3),
∴A点到x轴、y轴的距离分别是3和4.
又因为⊙A的半径为4,
∴A点到x轴的距离小于半径,到y轴的距离等于半径.
∴⊙A与x轴、y轴的位置关系分别为相交、相切.
由勾股定理可求出OA的距离等于5,因为OA>4,所以点O在圆外.
[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.
[生]切线的性质是:圆的切线垂直于过切点的直径.
切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.
[师]下面我们看它们的应用.
(投影片D)
1.如图(1),在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于点E,求AD的长.
2.如图(2),AB是⊙O的直径,C是⊙O上的一点,∠CAE=∠B,你认为AE与⊙O相切吗?为什么?
分析:1.由⊙O与AC相切可知OE⊥AC,又∠C=90°,所以△AOE∽△ABC,则对应边成比例, .求出半径和OA后,由OA-OD=AD,就求出了AD.
2.根据切线的判定,要求AE与⊙O相切,需求∠BAE=90°,由AB为
⊙O的直径得∠ACB=90°,则∠BAC+∠B=90°,所以∠CAE+∠BAC=90°,即∠BAE=90°.
[师]请大家按照我们刚才的分析写出步骤.
[生]1.解:∵∠C=90°,AC=12,BC=9,
∴由勾股定理得AB=15.
∵⊙O切AC于点E,连接OE,
∴OE⊥AC.
∴OE∥BC.∴△OAE∽△BAC.
∴ ,即 .
∴ .∴OE=
∴AD=AB-2OD=AB-2OE=15- ×2= .
2.解:∵AB是⊙O的直径,
∴∠ACB=90°.∴∠CAB+∠B=90°.
∴∠CAE=∠B,
∴∠CAB+∠CAE=90°,
即BA⊥AE.∵BA为⊙O的直径,
∴AE与⊙O相切.
3.圆和圆的位置关系
[师]还是请大家先总结内容,再进行练习.
[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.
[师]那么应根据什么条件来判断它们之间的关系呢?
[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.
当两个圆没有公共点时有两种情况,即外离和内含两种位置关系.当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.
当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切.
两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.
[师]只有这一种判定方法吗?
[生]还有用圆心距d和两圆的半径R、r之间的关系能判断外切和内切两种位置关系,当d=R+r时是外切,当d=R-r(R>r)时是内切.
[师]下面我们还可以用d与R,r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系.探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.
当d>R+r时,两圆外离;
当R-r<d<R+r时,两圆相交;
当d<R-r(R>r)时,两圆内含.
(投影片E)
设⊙O1和⊙O2的半径分别为R、r,圆心距为d,在下列情况下,⊙O1和⊙O2的位置关系怎样?
①R=6cm,r=3cm,d=4cm;
②R=6cm,r=3cm,d=0;
③R=3cm,r=7cm,d=4cm;
④R=1cm,r=6cm,d=7cm;
⑤R=6cm,r=3cm,d=10cm;
⑥R=5cm,r=3cm,d=3cm;
⑦R=3cm,r=5cm,d=1cm.
[生](1)∵R-r=3cm<4cm<R+r=9cm,
∴⊙O1与⊙O2的位置关系是相交;
(2)∵d<R-r,∴两圆的位置关系是内含;
(3)∵d=r-R,∴两圆的位置关系是内切;
(4)∵d=R+r,∴两圆的位置关系是外切;
(5)∵d>R+r,∴两圆的位置关系是外离;
(6)∵R-r<d<R+r,∴两圆的位置关系是相交;
(7)∵d<r-R,∴两圆的位置关系是内含.
三、有关外接圆和内切圆的定义及画法
[生]过不在同一条直线上的三个点可以确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,它是三角形三边垂直平分线的交点.
因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.
和三角形三边都相切的圆;叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心.因此,作三角形的内切圆时,只要作两条角平分线就找到了圆心,以这点与任一边之间的距离为半径,就可作出三角形的内切圆.
Ⅲ.课堂练习
1.画三个半径分别为2cm、2.5cm、4cm的圆,使它他们两两外切.
2.两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E,则DE与BC的位置关系怎样?DE与BC之间有怎样的数量关系?(DE BC)
Ⅳ.课时小结
本节课巩固了如何确定圆;点和圆、直线和圆、圆和圆之间的位置关系;如何作三角形的外接圆和内切圆.
Ⅴ.课后作业
复习题 B组
Ⅵ.活动与探究
如图,⊙O是Rt△ABC的内切圆,∠ACB=90°,AB=13,AC=12,求图中阴影部分的面积.
分析:根据图形,阴影部分的面积等于三角形ABC的面积与⊙O的面积差,由勾股定理可求出直角边BC的长度,则能求出S△ABC,要求圆的面积,则需求⊙O的半径OD或OE、OF.连接OA、OB、OC,则把△ABC分成三个三角形,即△OAB,△OBC、△OCA,则有S△ABC=S△OAB+S△OBC+S△OCA,从中可求出半径.
解:如图连接OA、OB、OC,则△ABC分成三个三角形,△OAB、△OBC、△OCA,OE、OF、OD分别是三角形各边上过切点的半径.
∴S△OAB= AB•OF,S△OBC= BC•OD,S△OCA= CA•OE.
∵S△ABC=S△OAB+S△OBC+S△OCA,
∴ AC•BC= AB•OF+ BC•OD+ CA•OE.
∵OD=OE=OF,
∴AC•BC=(AB+BC+CA)•OD.
在Rt△ABC中,AB=13,AC=12,由勾股定理得BC=5.
∴12×5=(12+13+5)•OD.
∴OD=2.
∴S阴影=S△ABC-S⊙O= ×12×5-π•22=30-4π.
板书设计
回顾与思考
一、确定圆的条件
二、三种位置关系;
1.点和圆的位置关系;2.直线和圆的位置关系.
3.圆和圆的位置关系
三、有关外接圆和内切圆的定义及画法
四、课堂练习五、课时小结 六、课后作业
第二十五章 概率
课题: 25.1 随机事件
教学目标:
知识技能目标
了解必然发生的事件、不可能发生的事件、随机事件的特点.
数学思考目标
学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表
象中,提炼出本质特征并加以抽象概括的能力.
解决问题目标
能根据随机事件的特点,辨别哪些事件是随机事件.
情感态度目标
引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.
教学重点:
随机事件的特点.
教学难点:
判断现实生活中哪些事件是随机事件.
教学过程
<活动一>
【问题情境】
摸球游戏
三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.
游戏规则
每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.
【师生行为】
教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.
学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.
教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.
【设计意图】
通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.
<活动二>
【问题情境】
指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?
1.通常加热到100°C时,水沸腾;
2.姚明在罚球线上投篮一次,命中;
3.掷一次骰子,向上的一面是6点;
4.度量三角形的内角和,结果是360°;
5. 经过城市中某一有交通信号灯的路口,遇到红灯;
6.某射击运动员射击一次,命中靶心;
7.太阳东升西落;
8.人离开水可以正常生活100天;
9.正月十五雪打灯;
10.宇宙飞船的速度比飞机快.
【师生行为】
教师利用多媒体课件演示问题,使问题情境更具生动性.
学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.
教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.
【设计意图】
引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.
<活动三>
【问题情境】
情境1
5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.
情境2
小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.
在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.
【师生行为】
学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.
【设计意图】
开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.
<活动四>
【问题情境】
请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.
【师生行为】
教师引导学生充分交流,热烈讨论.
【设计意图】
随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.
<活动五>
【问题情境】
李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.
【师生行为】
教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.
【设计意图】
有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.
<活动六>
【问题情境】
归纳、小结
布置作业
设计一个摸球游戏,要求对甲乙公平.
【师生行为】
学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.
【设计意图】
课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.
教 学 设 计 说 明
现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.
做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.
课题: 25.1.2 概率的意义
教学目标:
〈一〉知识与技能
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
〈二〉教学思考
让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
〈三〉解决问题
在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.
〈四〉情感态度与价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
【教学重点】在具体情境中了解概率意义.
【教学难点】对频率与概率关系的初步理解
【教具准备】壹元硬币数枚、图钉数枚、多媒体课件
【教学过程】
一、创设情境,引出问题
教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.
学生:抓阄、抽签、猜拳、投硬币,……
教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)
追问,为什么要用抓阄、投硬币的方法呢?
由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大
在学生讨论发言后,教师评价归纳.
用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.
质疑:那么,这种直觉是否真的是正确的呢?
引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.
说明:现实中不确定现象是大量存在的, 新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.
二 、动手实践,合作探究
1.教师布置试验任务.
(1)明确规则.
把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.
(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来..
2.教师巡视学生分组试验情况.
注意:
(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.
3.各组汇报实验结果.
由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.
提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.
在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.
解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.
4.全班交流.
把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.
表25-2
抛掷次数 50 100 150 200 250 300 350 400 450 500
“正面向上”的频数
“正面向上”的频率
想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?
注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.
想一想2(投影出示)
随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?
在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.
说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.
为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .
其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).
表25-3
试验者 抛掷次数(n) “正面朝上”次数(m) “正面向上”频率(m/n)
棣莫弗 2048 1061 0.518
布丰 4040 2048 0.5069
费勒 10000 4979 0.4979
皮尔逊 12000 6019 0.5016
皮尔逊 24000 12012 0.5005
通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.
在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.
5.下面我们能否研究一下“反面向上”的频率情况?
学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.
教师归纳:
(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.
(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.
说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.
三、评价概括,揭示新知
问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?
学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.
通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.
归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意指出:
1.概率是随机事件发生的可能性的大小的数量反映.
2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
想一想(学生交流讨论)
问题2.频率与概率有什么区别与联系?
从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.
四.练习巩固,发展提高.
学生练习
1.书上P143.练习.1. 巩固用频率估计概率的方法.
2.书上P143.练习.2 巩固对概率意义的理解.
教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.
五.归纳总结,交流收获:
1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.
2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.
【作业设计】
(1)完成P144 习题25.1 2、4
(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.
【教学设计说明】
这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.
1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.
贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.
2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.
3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.
课题: 25.2 列举法求概率
教学目标:
知识与技能目标
学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
过程与方法目标
经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
情感与态度目标
通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学重点:
习运用列表法或树形图法计算事件的概率。
教学难点:
能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学过程
1.创设情景,发现新知
教材是通过P151—P152的例5、例6来介绍列表法和树形图法的。
例5(教材P151):同时掷两个质地均匀的骰子,计算下列事件的概率:
(1) 两个骰子的点数相同;
(2) 两个骰子的点数的和是9;
(3) 至少有一个骰子的点数为2。
这个例题难度较大,事件可能出现的结果有36种。若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难。所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏(前一课已有例2作基础)。
(1)创设情景
引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。作为游戏者,你会选择哪个装置呢?并请说明理由。
【设计意图】 选用这个引例,是基于以下考虑:以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境。
(2)学生分组讨论,探索交流
在这个环节里,首先要求学生分组讨论,探索交流。然后引导学生将实际问题转化为数学问题,即:
“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”
由于事件的随机性,我们必须考虑事件发生概率的大小。此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘, 即涉及2个因素,与前一课所讲授单转盘概率问题(教材P148例2)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。怎样避免这个问题呢?
实际上,可以将这个游戏分两步进行。 于是,指导学生构造表格
(3)指导学生构造表格
A B 4 5 7
1
6
8
首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个。接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况。当A盘指针指向6或8时,B盘指针同样可能指向4、5、7三个数字中的任意一个。一共会产生9种不同的结果。
【设计意图】 这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。
(4)学生独立填写表格,通过观察与计算,得出结论(即列表法)
A B 4 5 7
1 (1,4) (1,5) (1,7)
6 (6,4) (6,5) (6,7)
8 (8,4) (8,5) (8,7)
从表中可以发现:A盘数字大于B盘数字的结果共有5种。
∴P(A数较大)= , P(B数较大)= .
∴P(A数较大)> P(B数较大)
∴选择A装置的获胜可能性较大。
在学生填写表格过程中,注意向学生强调数对的有序性。
由于游戏是分两步进行的,我们也可用其他的方法来列举。即先转动A盘,可能出现1,6,8三种结果;第二步考虑转动B盘,可能出现4,5,7三种结果。
(5)解法二:
由图知:可能的结果为: (1,4),(1,5),(1,7),
(6,4),(6,5),(6,7),
(8,4),(8,5),(8,7)。共计9种。
∴P(A数较大)= , P(B数较大)= .
∴P(A数较大)> P(B数较大)
∴选择A装置的获胜可能性较大。
然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像一棵树,所以称为树形图(在幻灯片上放映)。列表和树形图是列举法求概率的两种常用的方法。
【设计意图】自然地学生感染了分类计数和分步计数思想。
2.自主分析,再探新知
通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练掌握这两种方法,我选用了下列两道例题(本节教材P151—P152的例5和例6)。
例1:同时掷两个质地均匀的骰子,计算下列事件的概率:
(1) 两个骰子的点数相同;
(2) 两个骰子的点数的和是9;
(3) 至少有一个骰子的点数为2。
例1是教材上一道“掷骰子”的问题,有了引例作基础,学生不难发现:引例涉及两个转盘,这里涉及两个骰子,实质都是涉及两个因素。于是,学生通过类比列出下列表。
第2个
第1个 1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
由上表可以看出,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。由所列表格可以发现:
(1)满足两个骰子的点数相同(记为事件A)的结果有6个,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= = 。
[满足条件的结果在表格的对角线上]
(2)满足两个骰子的点数的和是9(记为事件B)的结果有4个,即(3,6),(4,5),(5,4),(6,3),所以P(B)= = 。
[满足条件的结果在(3,6)和(6,3)所在的斜线上]
(3)至少有一个骰子的点数为2(记为事件C)的结果有11个,所以P(C)= 。
[满足条件的结果在数字2所在行和2所在的列上]
接着,引导学生进行题后小结:
当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。运用列表法求概率的步骤如下:
①列表 ;
②通过表格计数,确定公式P(A)= 中m和n的值;
③利用公式P(A)= 计算事件的概率。
分析到这里,我会问学生:“例1题目中的“掷两个骰子”改为“掷三个骰子”,还可以使用列表法来做吗?”由此引出下一个例题。
例2: 甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。从三个口袋中各随机地取出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?
(2)取出的三个球上全是辅音字母的概率是多少?
例2与前面两题比较,有所不同:要从三个袋子里摸球,即涉及到3个因素。此时同学们会发现用列表法就不太方便,可以尝试树形图法。
本游戏可分三步进行。分步画图和分类排列相关的结论是解题的关键。
从图形上可以看出所有可能出现的结果共有12个,即:
(幻灯片上用颜色区分)
这些结果出现的可能性相等。
(1)只有一个元音字母的结果(黄色)有5个,即ACH,ADH,BCI,BDI,BEH,所以 ;
有两个元音的结果(白色)有4个,即ACI,ADI,AEH,BEI,所以 ;
全部为元音字母的结果(绿色)只有1个,即AEI ,所以 。
(2)全是辅音字母的结果(红色)共有2个,即BCH,BDH,所以 。
通过例2的解答,很容易得出题后小结:
当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。运用树形图法
求概率的步骤如下:(幻灯片)
①画树形图 ;
②列出结果,确定公式P(A)= 中m和n的值;
③利用公式P(A)= 计算事件概率。
接着我向学生提问:到现在为止,我们所学过的用列举法求概率分为哪几种情况? 列表法和画树形图法求概率有什么优越性?什么时候使用“列表法”方便,什么时候使用“树形图法”更好呢?
【设计意图】 通过对上述问题的思考,可以加深学生对新方法的理解,更好的认识到列表法和画树形图法求概率的优越性在于能够直观、快捷、准确地获取所需信息,有利于学生根据实际情况选择正确的方法。
3.应用新知,深化拓展
为了检验学生对列表法和画树形图法的掌握情况,提高应用所学知识解决问题的能力,在此我选择了教材P154课后练习作为随堂练习。
(1)经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率:
①三辆车全部继续前行;
②两辆车向右转,一辆车向左转;
③至少有两辆车向左转。
[随堂练习(1)是一道与实际生活相关的交通问题,可用树形图法来解决。]
(2)在6张卡片上分别写有1——6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
通过解答随堂练习(2),学生会发现列出的表格和例1的表格完全一样。不同的是:变换了实际背景,设置的问题也不一样。这时,我提出:我们是否可以根据这个表格再编一道用列举法求概率的题目来呢?
为了进一步拓展思维,我向学生提出了这样一个问题,供学生课后思考:
在前面的引例中,转盘的游戏规则是不公平的,你能把它改成一个公平的游戏吗?
【设计意图】 以上问题的提出和解决有利于学生发现数学问题的本质,做到举一反三,融会贯通。
4.归纳总结,形成能力
我将引导学生从知识、方法、情感三方面来谈一谈这节课的收获。要求每个学生在组内交流,派小组代表发言。
【设计意图】 通过这个环节,可以提高学生概括能力、表达能力,有助于学生全面地了解自己的学习过程,感受自己的成长与进步,增强自信,也为教师全面了解学生的学习状况、因材施教提供了重要依据。
5.布置作业,巩固提高
考虑到学生的个体差异,为促使每一个学生得到不同的发展,同时促进学生对自己的学习进行反思,在第五个环节“布置作业,巩固提高”里作如下安排:
(1)必做题:书本P154/ 3,P155/ 4,5
(2)选做题:
①请设计一个游戏,并用列举法计算游戏者获胜的概率。
②研究性课题:通过调查学校周围道路的交通状况,为交通部门提出合理的建议等。
【设计意图】 通过教学实践作业和社会实践活动,引导学生灵活运用所学知识,让学生把动脑、动口、动手三者结合起来,启发学生的创造性思维,培养协作精神和科学的态度。
25.3 利用频率估计概率
疑难分析:
1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.
2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.
3.利用频率估计出的概率是近似值.
例题选讲
例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:
投篮次数n 8 10 12 9 16 10
进球次数m 6 8 9 7 12 7
进球频率
(1)计算表中各次比赛进球的频率;
(2)这位运动员投篮一次,进球的概率约为多少?
解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;
(2)0.75.
评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.
例2 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:
(1) 计算并完成表格:
转动转盘的次数n 100 150 200 500 800 1000
落在“铅笔”的次数m 68 111 136 345 546 701
落在“铅笔”的频率
(2) 请估计,当 很大时,频率将会接近多少?
(3) 转动该转盘一次,获得铅笔的概率约是多少?
(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)
解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;
(2)0.69;
(3)0.69;
(4)0.69×360°≈248°.
评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.
基础训练
一、选一选(请将唯一正确答案的代号填入题后的括号内)
1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )
A.90个 B.24个 C.70个 D.32个
2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ).
A. B. C. D.
3.下列说法正确的是( ).
A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;
B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;
C.彩票中奖的机会是1%,买100张一定会中奖;
D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.
4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).
A. 、 B. 、
C. 、 D. 、
5.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).
A.10粒 B.160粒 C.450粒 D.500粒
6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是 ,这个 的含义是( ).
A.只发出5份调查卷,其中三份是喜欢足球的答卷;
B.在答卷中,喜欢足球的答卷与总问卷的比为3∶8;
C.在答卷中,喜欢足球的答卷占总答卷的 ;
D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.
7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为 ,四位同学分别采用了下列装法,你认为他们中装错的是( ).
A.口袋中装入10个小球,其中只有两个红球;
B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;
C.装入红球5个,白球13个,黑球2个;
D.装入红球7个,白球13个,黑球2个,黄球13个.
8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.
假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( ).
A. 2元 B.5元 C.6元 D.0元
二、填一填
9. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:
结果 第一组 第二组 第三组 第四组 第五组 第六组
两个正面 3 3 5 1 4 2
一个正面 6 5 5 5 5 7
没有正面 1 2 0 4 1 1
由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.
10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上
组别 频数 频率
46 ~ 50 40
51 ~ 55 80
56 ~ 60 160
61 ~ 65 80
66 ~ 70 30
71~ 75 10
从中任选一头猪,质量在65kg以上的概率是_____________.
11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:
组别 分 组 频 数 频率
1 49.5~59.5 60 0.12
2 59.5~69.5 120 0.24
3 69.5~79.5 180 0.36
4 79.5~89.5 130 c
5 89.5~99.5 b 0.02
合 计 a 1.00
表中a=________,b=________, c=_______;若成绩在90分以上(含90分)的学生获一等奖,估计全市获一等奖的人数为___________.
三、做一做
12.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:
实验次数 20 40 60 80 100 120 140 160 180 200
3的倍数的频数 5 13 17 26 32 36 39 49 55 61
3的倍数的频率
(1)完成上表;
(2)频率随着实验次数的增加,稳定于什么值左右?
(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?
(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?
13.甲、乙两同学开展“投球进筐”比赛,双方约定:① 比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;② 若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③ 计分规则如下:a. 得分为正数或0;b. 若8次都未投进,该局得分为0;c. 投球次数越多,得分越低;d.6局比赛的总得分高者获胜 .
(1) 设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;
(2) 若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):
第一局 第二局 第三局 第四局 第五局 第六局
甲 5 × 4 8 1 3
乙 8 2 4 2 6 ×
根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜.
四、试一试
16.理论上讲,两个随机正整数互质的概率为P= .请你和你班上的同学合作,每人随机写出若干对正整数(或自己利用计算器产生),共得到n对正整数,找出其中互质的对数m,计算两个随机正整数互质的概率,利用上面的等式估算 的近似值.
解答
一、
1.D 2.B 3.B 4.A 5.C 6.C 7.C 8.B
二、
9. ; 10. 0.1,0.2,0.4,0.2,0.075,0.025;0.1
11.50,10,0.26;200
三、
12.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31;
(2)0.31;
(3)0.31;
(4)0.3
13.解:(1)计分方案如下表:
n(次) 1 2 3 4 5 6 7 8
M(分) 8 7 6 5 4 3 2 1
(用公式或语言表述正确,同样给分.)
(2) 根据以上方案计算得6局比赛,甲共得24分,乙共得分23分,所以甲在这次比赛中获胜.
四、
14. 略 |